诺贝尔奖和药学家

当前位置: 首页 > 诺贝尔奖和药学家 > 药物靶点 > 正文

威廉·凯林、彼得·拉特克里夫爵士和格雷格·塞门扎:细胞如何感知氧气?

发布时间: 2021-04-25 浏览次数:

威廉·凯林、彼得·拉特克里夫爵士和格雷格·塞门扎荣获2019年诺贝尔生理学或医学奖


动物需要氧气才能把食物转化为有用的能量。几个世纪以来,人们已经对氧的重要性有所了解,但细胞如何适应氧水平的变化一直是未知的。2019年,William G. Kaelin Jr(威廉·凯林)、Sir Peter J. Ratcliffe(彼得·拉特克里夫爵士)和Gregg L. Semenza(格雷格·塞门扎)发现了细胞如何感知和适应氧供应的变化而获得诺贝尔生理学或医学奖。他们发现了细胞在应对不同水平的氧气时,调节基因活动的分子机制。这一重大发现揭示了生命中最重要的适应性机制之一,为我们理解氧水平如何影响细胞代谢和生理功能奠定了基础。他们的发现也有望为对抗贫血、癌症和许多其他疾病的新策略铺平道路。


塞门扎研究了EPO基因,以及它是如何被不同的氧气水平调控的。通过基因修饰的小鼠,发现位于EPO基因旁的特定DNA片段介导了对缺氧的反应。拉特克里夫爵士也研究了EPO基因的氧气依赖调节。两个研究小组都发现,几乎所有组织中都存在氧感应机制,而不仅仅是在通常产生EPO的肾脏细胞中。这些重要的发现表明该机制是普遍的,并在许多不同的细胞类型的功能。研究中他们都发现了一段特殊的DNA序列。如果把这段DNA序列安插在其他基因附近,那么在低氧的环境下,这些基因也能被诱导激活。也就是说,这段DNA序列其实起到了低氧环境下的调控作用。而一旦这段序列出现突变,相关基因就无法启动。

随后,研究发现,这段序列在细胞内调控了一种叫做HIF-1的蛋白质,由两个亚基HIF-α和HIF-1β组成,HIF-α目前已经有三种HIF-1α与HIF-2α,和HIF-3α。在缺氧的环境下,HIF-1能够结合并激活特定基因。HIF具有转录因子活性,即具有控制基因表达的能力,而控制HIF的开关就是氧气浓度。

HIF1调控氧气感知的通路


获奖者之一的美国学者小威廉·G·凯林在几十年前曾一度走在放弃科研的边缘。尽管以学霸级的表现在杜克大学获得数学与化学的学位,威廉对实验室的工作却没有太多好感。“实验室给我的感觉很糟糕,”威廉说:“所以当时我认为做医生才是正确的选择。”

在约翰霍普金斯医院经历了短暂的实习后,威廉来到了丹娜·法伯癌症研究所,开始接受临床肿瘤学的训练。然而为了达到毕业要求,威廉不得不进行两年的基础研究。就这样,他阴差阳错地回到了实验室。

如果你以为威廉就此爱上了科研工作,那可就大错特错了。事实上,这次实验室之旅堪称“灾难”。在威廉开始工作后不到4个月,实验室就关门大吉。“我的人生中充满了这样那样的迹象,告诉我实验室的科研生活不适合我”,威廉在事后回忆说。

在迷惘与困境中,大卫·利文斯顿(David Livingston)教授向威廉伸出了援手,将他纳入实验室。利文斯顿教授是视网膜母细胞瘤研究的先驱之一,在阐明这种癌症的机理上极有造诣。在利文斯顿教授的实验室中,威廉分离出了E2F蛋白,并发现它能够结合DNA,促进细胞增殖。在通常的情况下,E2F会被抑癌蛋白RB抑制,从而防止细胞过度分裂。然而当RB蛋白出现突变时,细胞就会不受控制地分裂,导致视网膜母细胞瘤的诞生。

这段意外的经历彻底改变了威廉的职业规划。在能同时接触癌症患者和一线癌症研究的情况下,威廉认识到“对这些患者来说,最终的希望还是来自对癌症分子机制的精准理解,以及由这些知识转化成的有效疗法。”

在1992年,威廉开设了属于自己的实验室。在寻找潜在的科研项目中,他了解到了一种叫做希佩尔-林道综合征(von Hippel-Lindau disease)的遗传疾病。这种疾病的患者会在肾脏,肾上腺、胰腺以及中枢神经系统等位置生出肿瘤。威廉注意到,这些肿瘤都生长在血管丰富的部位,而且它们会分泌促红细胞生成素,刺激红细胞的产生。这些特点都表明,氧气可能在它们的生长中起到了关键作用。

后续的研究结果也证明了这一点。当时,人们已经找到了和希佩尔-林道综合征相关的基因VHL。威廉的研究团队则发现在氧气充足时,VHL蛋白会标记一种叫做HIF的缺氧诱导因子,让它降解;而在氧气不足的情况下,VHL就失去了标记HIF的能力,因此HIF能继续留在细胞内起作用,并促进血管和红细胞的生成。

可是,这些细胞是怎么知道周围氧气是否丰富呢?

经过多年的探索,威廉与团队给出了答案:原来在氧气充足的情况下,细胞内羟化酶的效率会有所增加,使HIF蛋白获得一个羟基。而VHL能够识别这个羟基,并启动后续的调节功能。这项突破性的发现是人类首次意识到羟基化对于细胞信号通路有着至关重要的作用,它也因此刊登在了2001年的《科学》杂志上。

揭示生物氧气感知通路,不仅在基础科学上有其价值,还有望带来创新的疗法。比如倘若能通过调控HIF-1通路,促进红细胞的生成,就有望治疗贫血。而干扰HIF-1的降解,则能促进血管生成,治疗循环不良。

另一方面,由于肿瘤的生成离不开新生血管,如果我们能降解HIF-1α或相关蛋白(如HIF-2α),就有望对抗恶性肿瘤。目前,已有类似的疗法进入了早期临床试验阶段。

总结来说,这三名科学家的发现在基础研究和临床应用上,都有着重要价值。对于生物感知氧气通路的精妙揭示,更是彰显了人类在挑战未知上的智慧。


素材来源:搜狐

整理:王京波